Mark Scheme (Results)

November 2023

Pearson Edexcel International GCSE In Mathematics B (4MB1) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2023
Question Paper Log Number P73494
Publications Code 4MB1_01_2311_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

- Abbreviations

- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question: eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.
If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Question	Working	Answer	Mark	Notes	
$\mathbf{4}$				2	M1 for bisector of angle $F G H$ within lines of overlay
			Accurate bisector		A1 correct bisector which must be a straight line + construction lines ignore any additional lines eg line drawn from F to H
	wr				

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Question } & \text { Working } & \text { Answer } & \text { Mark } & \text { Notes } \\
\hline \mathbf{5} & & \frac{7}{3} \times \frac{5}{6} \text { or } \frac{2+1 / 3}{1+1 / 5}=\frac{30+5}{15+3} \text { or } \frac{35 / 15}{18 / 15} & & 2\end{array}
$$ \begin{array}{l}M1

Note if we see the fractions as a division then the denominators

must be the same eg \frac{7}{3} \div \frac{6}{5}=\frac{35}{18} or \frac{7}{6} \div \frac{3}{5}=\frac{35}{18} gets M0\end{array}\right]\)| A1 dep on M1 We must see both the correct top heavy fraction and |
| :--- |
| the correct simplified mixed fraction |

Question	Working	Answer	Mark	Notes	
$\mathbf{6}$			$5 p(m p-2)$	2	B2 correct answer B1 for $5\left(m p^{2}-2 p\right)$ or $p(5 m p-10)$ or $5 p(m p+2)$ or $5 p(\ldots-\ldots)$ Condone missing closed bracket
	cas				

Question	Working	Answer	Mark	Notes 7	

| Question | Working | Answer | Mark | Notes |
| :--- | :--- | :--- | :---: | :---: | :--- |
| $\mathbf{9}$ | | $80 \times 2 \frac{1}{2}[=200]$ or $80 \times 2 \frac{1}{2}+25[=225]$ oe
 3 M1 Correct method to find the distance in 2.5 hours (could be
 part of calculation to find the total distance or in a correct
 calculation to find the average speed)
 Ignore any incorrect units
 $\frac{80 \times 2.5+25}{2.5+0.5}$ or $\frac{200 "+25}{2.5+0.5}$ oe
 cas
 or allow a distance other than 200 provided it is clearly labelled
 as the distance in the first part of the journey and is not equal to
 80
 Ignore any incorrect units | | |
| | | A1 ignore any additional incorrect units
 isw further calculations for the method marks but not for the
 accuracy mark | | |

Question	Working	Answer	Mark	Notes	
$\mathbf{1 0}$	(a)		Correct $4 x-1$ in Venn diagram	1	B1 for 4x-1 oe (eg 5x-1-x) correctly placed or Allow 35-2x oe

		cas		Total 3 marks	
Question		Working	Answer	Mark	Notes
14	(a)		$\frac{50.4}{360}[=0.14]$	1	B1 oe eg $\frac{0.25 \times 50.4}{90}[=0.14]$ Allow verify eg $0.14 \times 360=50.4$ or $0.1=3.6$ and $14 \times 3.6=50.4$ provided we also see the 50.4 Note: allow $0.25+0.1+3 y+0.15+y=\frac{360-50.4}{360}$ to find y and then using this value of y to show or verify $x=0.14$ BUT B0 for using $x=0.14$ to find y and then using this value of y to show or verify that $x=0.14$
	(b)	Credit can be given for work seen in part (a) if not seen in part (b)			
		$0.25+0.1+3 y+0.15+x+y=1$ oe or $0.25+0.1+3 y+0.15+0.14+y=1$ oe		3	M1 equation for y, may also be in terms of x Allow one missing probability provided we see the remaining individual probabilities added to 1 If converting to degrees and using the sum of the angles equals 360 $90+36+3 y+54+50.4+y=360$
		$4 y=1-0.25-0.1-0.15-0.14$ oe eg $4 y=0.36$			M1 For collecting y terms on 1 side and numbers on the other in a correct equation. x must be replaced with 0.14 If converting to degrees $4 y=129.6=>y=32.4$
			0.09		A1 oe
					Total 4 marks

Qu	Working	Answer	Mark	Notes
15	$15: 6$ and $6: 8$ oe or $15: 6: 8$ oe or [no. of yellow \& blue counters $=] \frac{56}{4} \times 7[=98]$ [number of blue counters $=] \frac{56}{4} \times 3[=42$] oe eg $\frac{56}{4} \times 7-56[=42]$		4	M1 for writing the ratios with a common figure or for writing a correct 3 part ratio Allow equivalent ratios eg $7.5: 3$ and $3: 4$ or $7.5: 3: 4$ or eg $5: 2$ and $2: \frac{8}{3}$ or $5: 2: \frac{8}{3}$ or for the number of yellow and blue counters or for the number of blue counters which may be written in the ratio ie 42 : 56
	$\begin{aligned} & \text { eg } \frac{56}{8}[=7] \text { or } \frac{56}{4}[=14] \text { or } \frac{56}{8 / 3}[=21] \\ & \text { or }[\text { number of red counters }=] \frac{" 42 "}{2} \times 5[=105] \\ & \text { or }[\text { no. of red \& blue counters }=] \frac{42 "}{2} \times 7[=147] \end{aligned}$			M1 Finding the value of 1 part eg 56/(the number for yellow in their ratio) or for finding the number of red counters or red and blue counters ft their number of blue counters provided this is from a correct method or clearly labelled or identified as total number of blue counters
	$\begin{aligned} & \text { eg }(15+6+8) \times " 7 \text { " or }(7.5+3+4) \times " 14 " \\ & \text { or }\left(5+2+\frac{8}{3}\right) \times " 21 " \end{aligned}$ or $56 \div \frac{\text { [their ratio value for yellow] }}{\text { [sum of their ratio parts] }}$ eg $56 \div \frac{8}{15+6+8}$ or $56 \div \frac{4}{7.5+3+4}$ or $56 \div \frac{8 / 3}{5+2+8 / 3}$ or $56+42$ "+"105"			M1 Implies the previous method marks. A complete method to find the total number of counters in the bag (where-values in inverted commas must come from a correct method)
		203		A1
	cas			Total 4 marks

Question	Working	Answer	Mark	Notes
16	$10 x+6 x+8=40$ oe		4	M1 condone $C D$ to be $3 x+1$ (for this mark only) may be implied by $16 x+10=40$ or $x=\frac{15}{8}$
	$x=\frac{40-8}{16}[=2]$			M1 method to solve correct equation (this may imply the previous method mark)
	$\begin{aligned} & (2 x+1)(3 x+4)+2 x(5 x-(2 x+1)) \\ & (2 x+1)(3 x+4)+2 x(3 x-1) \mathrm{oe} \\ & \text { or }(2 x+1)(3 x+4-2 x)+5 x \times 2 x \text { oe } \\ & (2 x+1)(x+4)+10 x^{2} \\ & \text { or } 5 x(3 x+4)-(5 x-(2 x+1))(x+4) \text { oe } \\ & 5 x(3 x+4)-(3 x-1)(x+4) \\ & \text { Or } \\ & 12 x^{2}+9 x+4 \end{aligned}$			M1 for correct expression for the area, may be in terms of x or with their x value substituted, in which may be simplified, ft their value of x provided working is shown eg $\begin{aligned} & (2 \times " 2 "+1) \times(3 \times " 2 "+4)+(5 \times " 2 \text { " }-(2 \times \text { " } 2 \text { " }+1)) \times(2 \times \text { " } 2 \text { " }) \text { oe } \\ & \text { eg }(2 \times " 2 "+1) \times(3 \times " 2 "+4)+(3 \times " 2 "-1) \times(2 \times " 2 \text { " }) \text { or } 5 \times 10+5 \times 4 \end{aligned}$ or $(2 \times$ " 2 " +1$) \times(3 \times$ " 2 " $+4-2 \times$ " 2$)+\left(5 \times{ }^{\prime \prime} 2\right.$ " $) \times(2 \times$ " 2 " $)$ oe eg $\left(2 \times{ }^{\prime \prime} 2\right.$ " +1$) \times($ " 2 " +4$)+(5 \times 2$ " $) \times(2 \times$ " 2 " $)$ or $5 \times 6+10 \times 4$ or $\left(5 \times{ }^{\prime \prime} 2\right.$ " $) \times(3 \times$ " 2 " +4$)-\left(5 \times{ }^{2} 2\right.$ " $-\left(2 \times{ }^{\prime \prime} 2\right.$ " +1$\left.)\right) \times($ " 2 " +4$)$ oe $\operatorname{eg}(5 \times " 2$ " $) \times(3 \times " 2$ " +4$)-(3 \times " 2 "-1) \times(" 2 "+4)$ or $10 \times 10-5 \times 6$ or $12 \times{ }^{2} 2^{\prime 2}+9 \times$ " 2 " +4
		70		A1 SC B2 for an answer of 51.3125, 63.0625, 70.5625 Accept values that are rounded to 1dp
	cas			Total 4 marks

Question		Working	Answer	Mark	Notes
$\mathbf{1 7}$	(a)		$\left(\begin{array}{rr}12 & -1 \\ 8 & -5\end{array}\right)$	2	$\begin{array}{c}\text { B2 Fully correct matrix } \\ \text { (B1 for 2 or 3 correct entries in a matrix of correct order) }\end{array}$
	(b)	$-3 p-4=-10$ or $2 p+28=32$		2	M1 A correct equation or $\binom{-3 p-4}{2 p+28}$

Qu	Working	Answer	Mark	Notes
18	$\frac{75}{360} \times 2 \pi r=54$		4	M1 For a correct equation with one unknown
	$\begin{aligned} & \pi r=\frac{54}{\frac{75}{360} \times 2}\left[=\frac{19440}{150}=\frac{648}{5}=129.6\right] \mathrm{or} \\ & r=\frac{54}{\frac{75}{360} \times 2 \pi}\left[=\frac{19440}{150 \pi}=\frac{648}{5 \pi}=41.2529 \ldots\right] \end{aligned}$			M1 Correct method to find r or πr in a correct equation
	$\text { Area }=\frac{75}{360} \times \pi(" 41.2529 \ldots ")^{2}$			M1 ft their value for r or πr if working is shown
		1100		A1 awrt 1100 (1113.83...) If an answer is given in the range in the working and then rounded incorrectly award full marks
	cas			Total 4 marks

Q	Working	Answer	Mark	Notes	
19	Volume scale factor \mathbf{A} to $\mathbf{B}=0.57$ oe Volume scale factor \mathbf{B} to $\mathbf{A}=100 / 57$ ($=1.75 \ldots$) oe		4	M1 Correct SF oe fraction or decimal may be within a calculation eg $100^{3} / 57^{3}$ or $(1-0.43)$ Not for 57%	M3 for $(\sqrt[3]{0.57})^{2}$ or $\sqrt[3]{0.57^{2}}$ or
	$\sqrt[3]{0.57}[=0.829 \ldots]$ or $0.57^{2}[=0.3249]$ oe or $\sqrt[3]{100 / 57}[=1.206 \ldots]$ or $(100 / 57)^{2}[=3.077(8 \ldots)]$ oe			M1 $1^{\text {st }}$ step to find the SF for area Condone use of 0.43 instead of 0.57 eg $\sqrt[3]{0.43}[=0.754(7 \ldots)]$ or $0.43^{2}[=0.1849]$ or $\sqrt[3]{100 / 43}[=1.324(8 \ldots)]$ or $(100 / 43)^{2}[=5.408 \ldots]$	$\frac{(\sqrt[3]{57})^{2}}{(\sqrt[3]{100})^{2}} \times 700$
	$(" 0.829 ")^{2}[=0.687] \text { or } \sqrt[3]{" 0.3249 "}[=0.687 \ldots] \mathrm{oe}$ or $(" 1.206 ")^{2}[=1.454(6 \ldots)] \text { or } \sqrt[3]{" 3.077 \ldots "}[=1.454(6 \ldots)] \mathrm{oe}$			M1 Correct method to find an area SF from a volume SF when Volume SF is 0.57 or 0.43 If Volume $\mathrm{SF}=0.43$ Area SF = ("0.754(7)") $)^{2}$ or $\sqrt[3]{" 0.1849 "}[=0.569(6)]$ or $(" 1.324(8) \text { " })^{2}$ or $\sqrt[3]{" 5.408 \ldots . . "[=1.755 \ldots]}$	$\begin{aligned} & \left.\sqrt[3]{\frac{100}{57}}\right) \text { or } \\ & \sqrt[3]{\left(\frac{100}{57}\right)^{2}} \text { or } \\ & 700 \div \frac{(\sqrt[3]{100})^{2}}{(\sqrt[3]{57})^{2}} \end{aligned}$
	$\begin{aligned} & 700 \times " 0.687 " \\ & \text { or } \\ & 700 \div 1.454 \ldots . . \end{aligned}$	481		A1 awrt 480 to 483 If an answer is given in the range in the working and then rounded incorrectly award full marks	
ALT	Volume scale factor \mathbf{A} to $\mathbf{B}=0.57$ oe Volume scale factor \mathbf{B} to $\mathbf{A}=100 / 57(=1.75 \ldots)$ oe			M1 for recognition that the volume scale factor is 0.57 May be seen in a calculation	
	$\sqrt{700}[=10 \sqrt{7}=26.4(5 \ldots)]$ or $(\sqrt{700})^{3}[=18520 .(25918)]$			M1	
	$\begin{aligned} & \sqrt{700} \times \sqrt[3]{0.57}[=21.9(3 \ldots)] \text { oe } \\ & \operatorname{eg}\left(\sqrt[3]{(\sqrt{700})^{3} \times 0.57}\right)[=21.9(3 \ldots)] \end{aligned}$			M1 Allow use of 0.43 instead of 0.57 If Volume $\mathrm{SF}=0.43$ then $\sqrt{700} \times \sqrt[3]{0.43}[=19.9(6 \ldots)]$	
	$(" 21.9(3 \ldots . .))^{2}$	481		A1 awrt 480 to 483 If an answer is given in the range in the working and then rounded incorrectly award full marks	

	Working	Answer	Mark	Notes
20	$A X \times 4=7 \times 5$ oe or $(A B+4) \times 4=7 \times 5$ oe		5	M1 use chord theorem correctly to form a correct equation with one unknown Allow use of letters eg x where x has been clearly identified eg allow $4 x=7 \times 5$ where x is clearly identified as $A X$
	$P B=\frac{1}{2} \times \frac{35-16}{4}[=2.375] \text { oe eg } P B=\frac{" \frac{35}{4}--4}{2}[=2.375]$			M1 Correct value for $P B$ may be un-simplified May be on the diagram
	$\frac{\sin 115}{4+2.375 "}=\frac{\sin \angle B P C}{5}$			M1 Fully correct method to enable $\sin \angle B P C$ to be found. ft their $P B$ (or $P X$) provided $P B$ (or $P X$) is from a correct method or clearly labelled or identified as $P B$ (or $P X$) with working shown $P B($ or $P X)$ must be a numerical value
	$\sin \angle B P C=\frac{\sin 115}{(4+" 2.375 ")} \times 5[=0.7108 \ldots]$			M1 A correct expression for $\sin \angle B P C$ ft their $P B$ (or $P X$) provided $P B$ (or $P X$) is from a correct method or clearly labelled or identified as $P B$ (or $P X$) with working shown $P B($ or $P X)$ must be a numerical value
		45.3		A1 awrt 45.1 to 45.3 If an answer is given in the range in the working and then rounded incorrectly award full marks
	cas			Total 5 marks

Question		Worki			Answer	Mark	Notes M 1 (where is any number or no number)
21	(a)	$3\left(x^{2}\right.$	$\ldots .$. or $3\left(x^{2}\right.$) oe		3	
		$3(x+$	\ldots or $3[(x+1)$	$\ldots . .$.$] oe$			M1 (where is any number or no number)
					$3(x+1)^{2}-12$		A1 condone $3(x+1)^{2}+(-12)$ allow $p=3, q=1, r=-12$
	(b)	$\begin{aligned} & (x+1) \\ & (3 x+9 \end{aligned}$	$\begin{aligned} & \frac{12}{3} \text { or }(x+1)^{2}= \\ & -1) \text { or }(x+3) \end{aligned}$	$3)$ or $(x+3)(x-1)$ oe		2	M1 if using answer to part a then allow follow through of their r and p values provided $\frac{-r}{p}>0$ allow use of formula - no errors and substitution no more simplified than $\frac{-2 \pm \sqrt{16}}{2}$ seen in the working
					1, -3		A1 dep on M1 being awarded (allow if the method is seen in the working space for part (a))
ALT (a)		$p x^{2}+2 p q x+p q^{2}+r$					M1 for multiplying out $p(x+q)^{2}+r$ to obtain $p x^{2}+2 p q x+p q^{2}+r$ oe
		$\begin{aligned} & 2 \text { of: } \\ & p=3 \end{aligned}$	$2 p q=6 \text { oe }$	$p q^{2}+r=-9 \mathrm{oe}$			M1 for equating coefficients and making 2 correct statements
					$3(x+1)^{2}-12$		
							Total 5 marks

Question		Working	Answer	Mark	Notes
22	(a)	$v=6 t^{2}-16 t+15$		2	M1 for $6 t^{2}$ or $\pm 16 t$
			$6 t^{2}-16 t+15$		A1 do not isw an answer of $12 t-16$
	(b)	$a=12 t-16$		3	M1 for $12 t$ or ± 16 allow if seen in (a) only if used in (b)
		$12 t-16=0 \Rightarrow t=\frac{4}{3}$			M1 sets their $a=0$ leading to a value for t
			4.33		A1 allow 13/3 awrt 4.3 Note: we have not told the candidates that we must see working therefore a correct answer with no working scores full marks, an answer of $\frac{4}{3}$ scores 2 marks and an answer of $\left(\frac{4}{3}, \frac{13}{3}\right)$ without identifying the $\frac{13}{3}$ oe scores 2 marks
ALT		$6\left(t-\frac{16}{6 \times 2}\right)^{2} \pm \ldots$			M1 1st step to completing the square ft their (a) if a 3 term quadratic
		$6\left(t-\frac{4}{3}\right)^{2}+\frac{13}{3}$			M1 Completing the square ft their (a) if a 3 term quadratic
			4.33		A1 allow 13/3 awrt 4.3
		cas			Total 5 marks

Q	Working			Answer	Mark	Notes	
23	Finding $\angle O B C$ or $\angle O C B$ eg $\angle O B C=90-54[=36]$	$\begin{aligned} & \text { ALT 1 } \\ & \angle C A B=54 \end{aligned}$	$\begin{aligned} & \text { ALT2 } \\ & \angle O B C=90-54[=36] \end{aligned}$		6	M1	We can not mix and match methods but we award to the scheme that is the most benefit to the candidate.
	$\angle A C B=\frac{102}{2}[=51]$	Finding $\angle O A B$ or $\angle O B A$ eg $\angle O A B=\frac{(180-102)}{2}[=39]$	$\begin{array}{r} \angle B O C=180-2 \times " 36 " \\ {[=108]} \end{array}$			M1	to the candidate. Angles must be clearly labelled or otherwise identified with no ambiguity or contradiction on
	Finding $\angle O C A$ or $\angle O A C$ eg $\angle O C A=" 51 "-" 36 "$ or $\angle O C A=360-(360-102)-" 36 "-" 51 "$	Finding $\angle O C A$ or $\angle O A C$ eg $\angle O C A=" 54 "-" 39 "$	Finding $\angle O C A$ or $\angle O A C$ eg $\begin{aligned} & \angle O C A= \\ & \frac{180-(360-102-" 108 ")}{2} \end{aligned}$			M1	the diagram. Only accept one letter if: $\begin{array}{ll} A=15 & O=258 \\ B=36 & C=51 \end{array}$
				15		A1	
	Note values of 36 and 15 can come from triangles $C O B$ and $C O A$ are congruent a $\mathrm{OBC}=36 \mathrm{M} 1$ Then $180-36-\frac{360-102}{2}=15$ $51-" 15 "=36$ To help if you are seeing 129 then check Angle between tangent and radius (diam Angle at the centre is $\underline{2 \times}$ (double) angle centre Base angles in an isosceles triangle (are Angles in a triangle add to 180° Angles around a point add up to 360° Angles on a line add to 180° Alternate segment theorem Angles in a quadrilateral add to 360°	incorrect working. Some cand that $C O B=C O A$ arefully er) is 90° tircumference / angle at cir qual)	dates incorrectly think that umference is $\underline{1 / 2}$ angle at			Note: We can allow symbols for the words 'triangle', 'angle' and 'sum'	
	cas						Total 6 marks

Q	Working	Answer	Mark	Notes
24	$\mathrm{P}\left(1^{\text {st }} \text { Red }\right)=\frac{3}{8} \text { or } \mathrm{P}\left(1^{\text {st }} \text { Blue }\right)=\frac{5}{8}$		6	M1 For correct use of ratio to find a correct probability for the $1^{\text {st }}$ button or the correct number of red or blue on the first selection.
	$\mathrm{P}($ both Red $)=\frac{3}{8} \times \frac{\frac{3}{8} n-1}{n-1}$ oe eg $\frac{3 n}{8 n} \times \frac{\frac{3}{8} n-1}{n-1}$ or $\mathrm{P}($ both Blue $)=\frac{5}{8} \times \frac{\frac{5}{8} n-1}{n-1}$ oe eg $\frac{5 n}{8 n} \times \frac{\frac{5}{8} n-1}{n-1}$ or $\mathrm{P}($ one of each colour $)=\frac{3}{8} \times \frac{\frac{5}{8} n-1}{n-1}$ or $\frac{5}{8} \times \frac{\frac{3}{8} n-1}{n-1}$ oe			M1 For finding an algebraic expression for the probability of two red or two blue buttons Allow $p \times \frac{p n-1}{n-1}$ or $p \times \frac{p n}{n}$ where $0<p<1$ Allow $p \times \frac{q n-1}{n-1}$ or $p \times \frac{q n}{n}$ where $0<p<1$ and $p+q=1$
	$\frac{3}{8} \times \frac{\frac{3}{8} n-1}{n-1}+\frac{5}{8} \times \frac{\frac{5}{8} n-1}{n-1}$ oe or $2 \times \frac{3}{8} \times \frac{\frac{5}{8} n-1}{n-1}$ oe			M1 implies previous M1 for algebraic expression for $\mathrm{P}(2$ red $)+\operatorname{Prob}(2$ Blue) or $2 \times \mathrm{P}($ red $) \times \operatorname{Prob}($ Blue $)$ Allow $p \times \frac{p n-1}{n-1}+q \times \frac{q n-1}{n-1}$ or $p \times \frac{p n}{n}+q \times \frac{q n}{n}$ where $0<p<1$ and $p+q=1$
	$\begin{aligned} & \frac{3}{8} \times \frac{\frac{3}{8} n-1}{n-1}+\frac{5}{8} \times \frac{\frac{5}{8} n-1}{n-1}=\frac{10}{19} \text { oe } \\ & \text { or } 2 \times \frac{3}{8} \times \frac{5 / 8 n-1}{n-1}=\frac{9}{19} \text { oe } \end{aligned}$			M1 implies the previous method marks a correct equation with their ratio for $\mathrm{P}(2 \mathrm{red})+\operatorname{Prob}(2 \text { Blue })=10 / 19 \text { or } 2 \times \mathrm{P}(\text { red }) \times \operatorname{Prob}(\text { Blue })=9 / 19$ Allow $p \times \frac{p n-1}{n-1}+q \times \frac{q n-1}{n-1}$ where $0<p<1$ and $p+q=1$
	$\begin{aligned} & \frac{9}{8} n-3+\frac{25}{8} n-5=\frac{10}{19} \times 8(n-1) \text { or } 285 n=288(n-1) \text { oe } \\ & \frac{3}{8} n\left(\frac{3}{8} n-1\right)+\frac{5}{8} n\left(\frac{5}{8} n-1\right)=\frac{10}{19} n(n-1) \text { or } \frac{3}{32} n^{2}=9 n \text { oe } \end{aligned}$			M1 multiplying throughout by $n-1$ or n and $n-1$ to remove the denominator to form a correct linear or quadratic equation without terms in n on the denominator. Note: if all terms are on one side, condone the missing ${ }^{〔}=0$,
		96		A1 cao (ie must have discounted $n=0$ if found) Note: An answer of 96 with no obvious incorrect working gets all 6 marks
				Total 6 marks

Q	Working USING $\boldsymbol{n}=\mathbf{8} \boldsymbol{x}$	Answer	Mark	Notes
24	$\mathrm{P}\left(1^{\text {st }} \text { Red }\right)=\frac{3}{8} \text { or } \mathrm{P}\left(1^{\text {st }} \text { Blue }\right)=\frac{5}{8}$		6	M1 For correct use of ratio to find a correct probability for the $1^{\text {st }}$ button or the correct number of red or blue on the first selection.
	$\begin{aligned} & \mathrm{P}(\text { both Red })=\frac{3}{8} \times \frac{3 x-1}{8 x-1} \text { oe eg } \frac{3 x}{8 x} \times \frac{3 x-1}{8 x-1} \\ & \text { or } \mathrm{P}(\text { both Blue })=\frac{5}{8} \times \frac{5 x-1}{8 x-1} \text { oe eg } \frac{5 x}{8 x} \times \frac{5 x-1}{8 x-1} \\ & \text { or } \mathrm{P}(\text { one of each colour })=\frac{3}{8} \times \frac{5 x-1}{8 x-1} \text { or } \frac{5}{8} \times \frac{3 x-1}{8 x-1} \text { oe } \end{aligned}$			M1 For finding an algebraic expression for the probability of two red or two blue buttons Allow $\frac{r}{t} \times \frac{r x-1}{t x-1}$ or $\frac{r}{t} \times \frac{r x}{t x}$ Allow $\frac{r}{t} \times \frac{s x-1}{t x-1}$ or $\frac{r}{t} \times \frac{s x}{t x}$ where $r<t$ and $s<t$ and $r+s=\mathrm{t}$
	$\frac{3}{8} \times \frac{3 x-1}{8 x-1}+\frac{5}{8} \times \frac{5 x-1}{8 x-1}$ oe or $2 \times \frac{3}{8} \times \frac{5 x-1}{8 x-1}$ oe			M1 implies previous M1 for algebraic expression for $\mathrm{P}(2$ red $)+\operatorname{Prob}(2$ Blue) or $2 \times \mathrm{P}($ red $) \times \operatorname{Prob}($ Blue $)$ Allow $\frac{r}{t} \times \frac{r x-1}{t x-1}+\frac{r}{t} \times \frac{s x-1}{t x-1}$ or $\frac{r}{t} \times \frac{r x}{t x}+\frac{r}{t} \times \frac{s x}{t x}$ where $r<t$ and $s<t$ and $r+s=\mathrm{t}$
	$\frac{3}{8} \times \frac{3 x-1}{8 x-1}+\frac{5}{8} \times \frac{5 x-1}{8 x-1}=\frac{10}{19}$ oe or $2 \times \frac{3}{8} \times \frac{5 x-1}{8 x-1}=\frac{9}{19}$ oe			M1 implies the previous method marks a correct equation with their ratio for $\mathrm{P}(2$ red $)+\mathrm{Prob}(2$ Blue $)=10 / 19$ or $2 \times \mathrm{P}($ red $) \times \operatorname{Prob}($ Blue $)=9 / 19$ Allow $\frac{r}{t} \times \frac{r x-1}{t x-1}+\frac{r}{t} \times \frac{s x-1}{t x-1}$ where $r<t$ and $s<t$ and $r+s=\mathrm{t}$
	$\begin{aligned} & 19\left(34 x^{2}-8 x\right)=10\left(64 x^{2}-8 x\right) \text { or } \\ & 646 x^{2}-152 x=640 x^{2}-80 x \text { or } 6 x^{2}-72 x[=0] \mathrm{oe} \\ & \text { or } \\ & 19(34 x-8)=10(64 x-8) \text { or } 646 x-152=640 x-80 \text { or } \\ & 6 x-72=0 \text { oe } \end{aligned}$			M1 multiplying throughout by $8 x-1$ or $8 x^{2}-x$ to remove the denominator to form a correct linear or quadratic equation without terms in x on the denominator. Note: if all terms are on one side, condone the missing ${ }^{〔}=0^{\prime}$ Note: this leads to a value of $x=12$
		96		A1 cao (ie must have discounted $n=0$ if found) Note: An answer of 96 with no obvious incorrect working gets all 6 marks
				Total 6 marks

Q	Working	Answer	Mark	Notes	
$\mathbf{2 5}$		$p h-2 h=5$ or $-5=2 h-p h$ or $\frac{5}{h}=p-2$ or $\frac{-5}{h}=2-p$		3	M1 Multiply by h and collect terms in h on one side. Allow one sign error or separate the fraction and isolate the term in h. Allow one sign error
		$h(p-2)=5$ or $-5=h(2-p)$			M1 taking h out as a common factor (dep on two different terms in $h)$ or multiplying throughout by h (if separated the fraction and isolated the term in $h)$
			$h=\frac{5}{p-2}$		A1 allow $h=\frac{-5}{2-p}$ Do not isw but condone $\frac{5}{p-2}$ or $\frac{-5}{2-p}$ on the answer line, provided $h=\frac{5}{p-2}$ or $h=\frac{-5}{2-p}$ has been seen in the working space

Q	Working	Answer	Mark	Notes
26	$(4 x+6)^{2}=(6 x+4)^{2}+(3 x)^{2}-2 \times 3 x \times(6 x+4) \cos 60$ oe or $\cos 60=\frac{(6 x+4)^{2}+(3 x)^{2}-(4 x+6)^{2}}{2 \times 3 x \times(6 x+4)}$ oe		6	M1 for correct substitution into the cosine rule Only condone missing brackets around the $6 x+4$ and $4 x+6$ if recovered Note having \sin instead of cos is not considered a misread
	$16 x^{2}+48 x+36=36 x^{2}+48 x+16+9 x^{2}-18 x^{2}-12 x$ or $16 x^{2}+36=36 x^{2}+16+9 x^{2}-18 x^{2}-12 x$ or $\frac{1}{2}=\frac{36 x^{2}+48 x+16+9 x^{2}-16 x^{2}-48 x-36}{36 x^{2}+24 x} \mathrm{oe}$ eg $\frac{1}{2}=\frac{29 x^{2}-20}{36 x^{2}+24 x}$			M1 Two out of three correct terms in 3TQ or Expand brackets in a correct equation. Condone two incorrect or missing terms (likely to be having one or two signs incorrect on the last two terms eg $16 x^{2}+48 x+36=36 x^{2}+48 x+16+9 x^{2}+18 x^{2}+12 x$
	$22 x^{2}-24 x-40[=0]$ or $11 x^{2}-12 x-20[=0]$ oe			M1 implies previous method marks Simplifying to get correct 3 TQ
	$(11 x+10)(x-2)[=0]$			M1 Attempt to solve their three term quadratic, if the quadratic is incorrect the method must be shown. For factorisation must multiply out to give 2 of the terms. Allow one error if using quadratic equation. Implied by $x=2$ if previous method mark awarded
	$\begin{aligned} & \frac{3 x(6 x+4) \sin 60}{2} \text { oe } \\ & \text { or } \\ & s=\frac{(4 x+6)+(3 x)+(6 x+4)}{2}\left[=\frac{13 x+10}{2}\right] \text { with } \\ & \sqrt{" s " \times\left(" s^{\prime \prime}-(4 x+6)\right) \times\left(" s^{n}-3 x\right) \times\left(" s^{n}-(6 x+4)\right)} \end{aligned}$			M1 indep Correct method to find the area of the triangle may be in terms of x or with their x value substituted, ft their value of x. If $x \neq 2$ the working must be shown $\frac{1}{2}(6 \times " 2 "+4)(3 \times " 2 \text { " }) \sin 60$ or $\begin{aligned} & s=\frac{(4 \times \text { " } 2 \text { " }+6)+(3 \times " 2 ")+(6 \times " 2 "+4)}{2}[=18] \text { with } \\ & \sqrt{" 18 " \times(" 18 "-(4 \times " 2 "+6)) \times(" 18 "-(3 \times " 2 ")) \times(" 18 "-(6 \times " 2 "+4))} \end{aligned}$
		41.6		A1 Condone $24 \sqrt{3}$ If an answer is given in the range in the working and then rounded incorrectly award full marks
	cas			Total 6 marks

Q	Working	Answer	Mark	Notes							
$\mathbf{2 7}$	(a)		$2 \sqrt{2}$	1	B1 accept $a=2, b=2$	$	$		(b)	$\frac{6+2 \sqrt{3}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$	
:---	:---	:---	:---								

Q	Working	Answer	Mark	Notes	
$\mathbf{2 8}$	(a)	$12\left(\frac{4}{3}\right)^{3}-4\left(\frac{4}{3}\right)^{2}-25\left(\frac{4}{3}\right)+14$			

