

Mark Scheme (Results)

November 2023

Pearson Edexcel International GCSE In Mathematics B (4MB1) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2023 Question Paper Log Number P73494 Publications Code 4MB1_01_2311_MS All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

• Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- cao correct answer only
- o ft follow through
- isw ignore subsequent working
- o SC special case
- oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- awrt answer which rounds to
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question: eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Ques	tion	Working	Answer	Mark	Notes
1	(a)		2	1	B1
	(b)		or	1	B1 A suitable pattern
		cas			Total 2 marks

Question		Working	Answer	Mark	Notes			
2	(a)		4	1	B1 with no incorrect values			
	(b)		$\sqrt{3}$	1	B1 with no incorrect values			
		cas			Total 2 marks			

Question	Working	Answer	Mark	Notes
3	$(3 \times 5^2 - 20)[=55]$ and $(3 \times 4^2 - 20)[=28]$ or $(3 \times 5^2 - 20) - (3 \times 4^2 - 20) [= 55 - 28]$ or $(3 \times 5^2) - (3 \times 4^2)[= 75 - 48]$ oe		2	M1 A correct method to find the 4 th term and the 5 th term or correct method to find the difference (condone missing brackets around the terms), which could be the other way round eg $28 - 55$
		27 or – 27		A1
	cas			Total 2 marks

Question		Working	Answer	Mark	Notes
4				2	M1 for bisector of angle <i>FGH</i> within lines of overlay
			Accurate bisector		A1 correct bisector which must be a straight line + construction
					lines ignore any additional lines eg line drawn from F to H
		wr			Total 2 marks

Question	Working	Answer	Mark	Notes
5	$\frac{7}{3} \times \frac{5}{6} \text{ or } \frac{2 + \frac{1}{3}}{1 + \frac{1}{5}} = \frac{30 + 5}{15 + 3} \text{ or } \frac{\frac{35}{15}}{\frac{18}{15}}$		2	M1 Note if we see the fractions as a division then the denominators must be the same eg $\frac{7}{3} \div \frac{6}{5} = \frac{35}{18}$ or $\frac{7}{6} \div \frac{3}{5} = \frac{35}{18}$ gets M0
	$\frac{35}{18}$	$\frac{35}{18} = 1\frac{17}{18}$		A1 dep on M1 We must see both the correct top heavy fraction and the correct simplified mixed fraction
	wr			Total 2 marks

Question		Working	Answer	Mark	Notes
6			5p(mp-2)	2	B2 correct answer
					B1 for $5(mp^2 - 2p)$ or $p(5mp - 10)$ or $5p(mp + 2)$ or $5p()$
					Condone missing closed bracket
		cas			Total 2 marks

Question	Working	Answer	Mark	Notes
7		3500	2	B2 Allow $2^2 \times 5^3 \times 7$ must be their only answer or identified as their
				answer
				B1 $2^2 \times 5^n \times 7$ or $2^m \times 5^3 \times 7$ where <i>m</i> and <i>n</i> must be
				non zero integers
				or having the HCF with other values in the working space
				Note B0 for finding the LCM only
	cas			Total 2 marks
Question	Working	Answer	Mark	Notes
8	$\sqrt{7^2 + (-3)^2}$ or $\sqrt{7^2 + 3^2}$		2	M1 Condone omission of $\sqrt{}$, missing brackets around the -3 and subtraction of the squares rather than addition. eg allow $7^2 + -3^2$ and 7^23^2 and $7^2 - (-3)^2$ Implied by $\sqrt{58}$ or $\pm\sqrt{58}$ or $-\sqrt{58}$ or 7.6
		$\sqrt{58}$		A1 isw if they give the exact value and then 7.6 A0 for $\pm\sqrt{58}$
	cas			Total 2 marks

Question		Working	Answer	Mark	Notes
9		$80 \times 2\frac{1}{2} [= 200]$ or $80 \times 2\frac{1}{2} + 25 [= 225]$ oe		3	M1 Correct method to find the distance in 2.5 hours (could be part of calculation to find the total distance or in a correct calculation to find the average speed) Ignore any incorrect units
		$\frac{80 \times 2.5 + 25}{2.5 + 0.5} \text{ or } \frac{"200" + 25}{2.5 + 0.5} \text{ oe}$			M1 Correct method to find speed using total distance/ total time or allow a distance other than 200 provided it is clearly labelled as the distance in the first part of the journey and is not equal to 80 Ignore any incorrect units
			75		A1 ignore any additional incorrect units isw further calculations for the method marks but not for the accuracy mark
		cas			Total 3 marks

Question		Working	Answer	Mark	Notes
10	(a)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Correct $4x - 1$ in Venn diagram	1	B1 for $4x - 1$ oe (eg $5x - 1 - x$) correctly placed or Allow $35 - 2x$ oe
	(b)	x-5+x+"4x-1"+2=32 oe eg $x-5+x+"4x-1"=30$		2	M1 correct equation ft their $4x - 1$ only. Condone the missing 2 only eg $x-5+x+"4x-1"=32$
			6		A1
		cas			Total 3 marks

Ques	tion	Working	Answer	Mark	Notes
11		0.4×10^{101} or 36×10^{100} or 0.2×10^{101} or 18×10^{100}		3	M1 for converting one of the numbers so that it is written as the same power of ten as the other number (this may be done after dividing by 2) Implied by 4×10^{101} or 40×10^{100} oe
		$\frac{\frac{0.4 \times 10^{101} + 3.6 \times 10^{101}}{2} \text{ oe}}{\text{or } \frac{4 \times 10^{100} + 36 \times 10^{100}}{2} \text{ oe}}$			M1 Allow correct numbers in any form eg $\frac{4 \times 10^{100} + 3.6 \times 10^{101}}{2}$
			2×10 ¹⁰¹		A1 oe eg 2.0×10^{101} but not 20×10^{100} (this implies M2) Allow international multiplication symbol of . for \times eg 2.10^{101} Do not isw
		cas			Total 3 marks

Ques	stion	Working	Answer	Mark	Notes	
12	(a)		m = -2	2	B1 cao	SCP1 for the wrong way round
			<i>c</i> = 8		B1 cao	SCB1 for the wrong way found.
	(b)		Correct region shaded	1	 B1 Correct region indicated by one of correct region shaded correct region labelled as I all of outside region shade 	f the following R d.
	•	cas				Total 3 marks

Questi	on Working	Answer	Mark	Notes
13	$\frac{x^{2}(x+1)}{(x+1)(x+2)}$		3	 M2 numerator fully factorised and denominator factorised correctly does not have to be within a fraction M1 for one of the numerator fully factorised or denominator factorised correctly does not have to be within a fraction
		$\frac{x^2}{x+2}$		A1 (do not isw)

		cas			Total 3		
Que	stion	Working		Answer	Mark	Notes	
14	(a)			$\frac{50.4}{360} = 0.1$.4] 1	B1 oe eg $\frac{0.25 \times 50.4}{90}$ [= 0.14] Allow verify eg 0.14 × 360=50.4 or 0.1 = 3.6 and 14 × 3.6 = 50.4 provided we also see the 50.4 Note: allow 0.25+0.1+3y+0.15+ y = $\frac{360-50.4}{360}$ to find y and then using this value of y to show or verify x = 0.14 BUT B0 for using x = 0.14 to find y and then using this value of y to show or verify that x = 0.14	
	(b)	Credit can be given for work seen in	part (a) if no	ot seen in	part (b)		
		0.25 + 0.1 + 3y + 0.15 + x + y = 1 oe or $0.25 + 0.1 + 3y + 0.15 + 0.14 + y = 1$	oe		3	M1 equation for y, may also be in terms of x Allow one missing probability provided we see the remaining individual probabilities added to 1 If converting to degrees and using the sum of the angles equals 360 90 + 36 + 3y + 54 + 50.4 + y = 360	
		4y = 1 - 0.25 - 0.1 - 0.15 - 0.14 oe eg	4 <i>y</i> = 0.36			M1 For collecting y terms on 1 side and numbers on the other in a correct equation. x must be replaced with 0.14 If converting to degrees $4y = 129.6 \Rightarrow y = 32.4$	
				0.09		A1 oe	
						Total 4 marks	

Question		Working	Answer	Mark	Notes
15		15 : 6 and 6 : 8 oe or 15 : 6 : 8 oe		4	M1 for writing the ratios with a common figure or for writing a
		or			correct 3 part ratio
					Allow equivalent ratios
					eg 7.5 : 3 and 3 : 4 or 7.5 : 3 : 4 or eg 5 : 2 and 2 : $\frac{6}{3}$ or 5 : 2 : $\frac{6}{3}$
		[no. of yellow & blue counters =] $\frac{56}{4} \times 7 [= 98]$			or for the number of yellow and blue counters
		[number of blue counters =] $\frac{56}{4} \times 3$ [= 42] oe			or for the number of blue counters which may be written in the ratio ie 42 : 56
		eg $\frac{30}{4} \times 7 - 56 [= 42]$			
		eg $\frac{56}{8}[=7]$ or $\frac{56}{4}[=14]$ or $\frac{56}{\frac{8}{3}}[=21]$			M1 Finding the value of 1 part eg 56/(the number for yellow in their ratio) or for finding the number of red counters or red and blue counters
		or [number of red counters =] $\frac{"42"}{2} \times 5[=105]$			ft their number of blue counters provided this is from a correct method or clearly labelled or identified as total number of blue counters
		or [no. of red & blue counters =] $\frac{42\pi}{2} \times 7$ [=147]			counters
		eg $(15+6+8) \times "7"$ or $(7.5+3+4) \times "14"$			M1 Implies the previous method marks.
		or $\left(5+2+\frac{8}{3}\right) \times "21"$			A complete method to find the total number of counters in the bag (where-values in inverted commas must come from a correct method)
		or $56 \div \frac{[\text{their ratio value for yellow}]}{[\text{sum of their ratio parts}]}$			
		eg $56 \div \frac{8}{15+6+8}$ or $56 \div \frac{4}{7.5+3+4}$			
		or $56 \div \frac{\frac{8}{3}}{5+2+\frac{8}{3}}$			
		or 56+"42"+"105"			
			203		A1
		cas			Total 4 marks

Ques	tion	Working	Answer	Mark	Notes
16		10x + 6x + 8 = 40 oe		4	M1 condone <i>CD</i> to be $3x+1$ (for this mark only) may be implied by
					$16x + 10 = 40 \text{ or } x = \frac{15}{8}$
		$x = \frac{40 - 8}{16} [= 2]$			M1 method to solve correct equation (this may imply the previous method mark)
		(2x+1)(3x+4)+2x(5x-(2x+1))			M1 for correct expression for the area, may be in terms of <i>x</i> or with
		(2x+1)(3x+4)+2x(3x-1)oe			their x value substituted, in which may be simplified, ft their value of x provided working is shown
		or $(2x+1)(3x+4-2x)+5x\times 2x$ oe			eg
		$(2x+1)(x+4)+10x^2$			$(2 \times 2^{+1}) \times (3 \times 2^{+4}) + (5 \times 2^{-1} - (2 \times 2^{+1})) \times (2 \times 2^{-1})$ oe
		(2x+1)(x+4)+10x			eg $(2 \times "2"+1) \times (3 \times "2"+4) + (3 \times "2"-1) \times (2 \times "2")$ or $5 \times 10 + 5 \times 4$
		or $5x(3x+4) - (5x - (2x+1))(x+4)$ oe			
		5x(3x+4)-(3x-1)(x+4)			or $(2 \times 2^{+1}) \times (3 \times 2^{+4} - 2 \times 2) + (5 \times 2^{+}) \times (2 \times 2^{+})$ oe
					eg $(2 \times 2^{+}+1) \times (2^{+}+4) + (5 \times 2^{+}) \times (2 \times 2^{+})$ or $5 \times 6 + 10 \times 4$
		Or			
		$12x^2 + 9x + 4$			or $(5 \times 2^{"}) \times (3 \times 2^{"}+4) - (5 \times 2^{"}-(2 \times 2^{"}+1)) \times (2^{"}+4)$ oe
					$eg(5\times"2")\times(3\times"2"+4)-(3\times"2"-1)\times("2"+4)$ or $10\times10-5\times6$
					or $12 \times 2^{2} + 9 \times 2^{2} + 4$
			70		A1
					SC B2 for an answer of 51.3125, 63.0625, 70.5625 Accept values that are rounded to 1dp
		cas			Total 4 marks

Question		Working	Answer	Mark	Notes
17 (a)			$\begin{pmatrix} 12 & -1 \\ 8 & -5 \end{pmatrix}$	2	B2 Fully correct matrix (B1 for 2 or 3 correct entries in a matrix of correct order)
(b)		-3p-4 = -10 or $2p+28 = 32$		2	M1 A correct equation or $\begin{pmatrix} -3p-4\\ 2p+28 \end{pmatrix}$
			2		A1
		cas			Total 4 marks

Question		Working		Mark	Notes
18		$\frac{75}{2\pi r} \times 2\pi r = 54$		4	M1 For a correct equation with one unknown
		360			
		$\pi r = \frac{54}{\frac{75}{360} \times 2} \left[= \frac{19440}{150} = \frac{648}{5} = 129.6 \right] \text{ or}$ $r = \frac{54}{\frac{75}{360} \times 2\pi} \left[= \frac{19440}{150\pi} = \frac{648}{5\pi} = 41.2529 \right]$			M1 Correct method to find <i>r</i> or πr in a correct equation
		Area = $\frac{75}{360} \times \pi ("41.2529")^2$			M1 ft their value for r or πr if working is shown
			1100		A1 awrt 1100 (1113.83)
					If an answer is given in the range in the working
					and then rounded incorrectly award full marks
		cas			Total 4 marks

Q	Working	Answer	Mark	Notes	
19	Volume scale factor \mathbf{A} to $\mathbf{B} = 0.57$ oe		4	M1 Correct SF oe fraction or decimal may be	M3 for $(\sqrt[3]{0.57})^2$ or
				within a calculation eg $100^{3}/57^{3}$ or $(1 - 0.43)$	
	Volume scale factor B to $\mathbf{A} = 100/57$ (=1.75) oe			Not for 57%	$\sqrt[3]{0.57^2}$ or
	$\sqrt[3]{0.57} = 0.829$ or $0.57^2 = 0.3249$ oe			M1 1 st step to find the SF for area	$(\sqrt[3]{57})^2$
	or			Condone use of 0.43 instead of 0.57 eq	$\frac{1}{\sqrt{1-1}} \times 700$
	$\sqrt[3]{100/57} = 1.206 \text{ or } (100/57)^2 = 3.077(8) \text{ oe}$			$\frac{3}{0.43} \left[-0.754(7) \right] \text{ or } 0.43^2 \left[-0.1849 \right] \text{ or }$	(∛100) [°]
					or
				$\sqrt[3]{100}/43 [= 1.324(8)] \text{ or } (100/43)^2 [= 5.408]$	$\left(\sqrt{100} \right)^2$
	$("0.829")^{2}[-0.687] \text{ or } \sqrt[3]{0.3249"} [=0.687] \text{ loc}$			M1 Correct method to find an area SF from a	$\sqrt[3]{\frac{100}{57}}$ or
				volume SF when Volume SF is 0.57 or 0.43	$(\sqrt{57})$
					$(100)^2$
	$("1.206")^{2} = 1.454(6)$ or $\sqrt[3]{"3.077"} = 1.454(6)$ oe			If Volume SF = 0.43	$\sqrt[3]{\frac{57}{57}}$ or
				Area SF = $(10.754(7)1)^2 = 3/10.104011 [-0.550(6)]$	$(\sqrt{2})^2$
				$("0.754(7)")$ or $\sqrt[3]{"0.1849"} = 0.569(6)$	700 ⋅ (³ √100)
				or	$700 \div \overline{\left(\frac{3}{57}\right)^2}$
				$("1.324(8)")^2$ or $\sqrt[3]{"5.408"}[=1.755]$	$(\sqrt{37})$
	700×"0.687"	481		A1 awrt 480 to 483	
	or			If an answer is given in the range in the working an	d then rounded
	700÷"1.454"			incorrectly award full marks	
ALT	Volume scale factor \mathbf{A} to $\mathbf{B} = 0.57$ oe			M1 for recognition that the volume scale factor is 0.	.57
	Volume scale factor B to $\mathbf{A} = 100/57 (=1.75)$ oe			May be seen in a calculation	
	$\sqrt{700} = 10\sqrt{7} = 26.4(5)$ or $(\sqrt{700})^3 = 18520.(25918)$			M1	
	$\sqrt{700} \times \sqrt[3]{0.57} [= 21.9(3)]$ oe			M1	
	$\left[3\left(\sqrt{700}\right)^{3}\times0.57\right)\left[-21.0(2)\right]$			Allow use of 0.43 instead of 0.57	
	$\left[\frac{\log[\sqrt{\sqrt{00}} \times 0.57]}{\sqrt{\sqrt{100}} \times 0.57} \right]^{[=21.9(5)]}$			If Volume SE = 0.43 then $\sqrt{700} \times \sqrt[3]{0.43} [-10.9(6)]$	1
		401		1 + 0.00 + 0.0	1
	$("21.9(3)")^2$	481		A1 awrt 480 to 483	d than roundad
				incorrectly award full marks	
				meeneery award run marks	Total 4 marks

Ques	tion	Working	Answer	Mark	Notes
20		$AX \times 4 = 7 \times 5$ oe or $(AB+4) \times 4 = 7 \times 5$ oe		5	M1 use chord theorem correctly to form a correct equation with one unknown Allow use of letters eg x where x has been clearly identified eg allow $4x = 7 \times 5$ where x is clearly identified as AX
		$PB = \frac{1}{2} \times \frac{35 - 16}{4} [= 2.375] \text{ oe eg } PB = \frac{\frac{35}{4} - 4}{2} [= 2.375]$			M1 Correct value for <i>PB</i> may be un-simplified May be on the diagram
		$\frac{\sin 115}{4 + "2.375"} = \frac{\sin \angle BPC}{5}$			M1 Fully correct method to enable $\sin \angle BPC$ to be found. ft their <i>PB</i> (or <i>PX</i>) provided <i>PB</i> (or <i>PX</i>) is from a correct method or clearly labelled or identified as <i>PB</i> (or <i>PX</i>) with working shown <i>PB</i> (or <i>PX</i>) must be a numerical value
		$\sin \angle BPC = \frac{\sin 115}{(4 + "2.375")} \times 5[=0.7108]$			M1 A correct expression for $\sin \angle BPC$ ft their <i>PB</i> (or <i>PX</i>) provided <i>PB</i> (or <i>PX</i>) is from a correct method or clearly labelled or identified as <i>PB</i> (or <i>PX</i>) with working shown <i>PB</i> (or <i>PX</i>) must be a numerical value
			45.3		A1 awrt 45.1 to 45.3 If an answer is given in the range in the working and then rounded incorrectly award full marks
					1 John S marks

Question		Working	Answer	Mark	Notes
21	(a)	$3(x^2+2x)$ or $3(x^2+2x)$ oe		3	M1 (where is any number or no number)
		$3(x+1)^2$ or $3[(x+1)^2$] oe			M1 (where is any number or no number)
			$3(x+1)^2-12$		A1 condone $3(x+1)^2 + (-12)$ allow $p = 3, q = 1, r = -12$
(b)		$(x+1)^2 = \frac{12}{3}$ or $(x+1)^2 = 4$ or (3x+9)(x-1) or $(x+3)(3x-3)$ or $(x+3)(x-1)$ oe		2	M1 if using answer to part a then allow follow through of their <i>r</i> and <i>p</i> values provided $\frac{-r}{p} > 0$ allow use of formula – no errors and substitution no more simplified than $\frac{-2 \pm \sqrt{16}}{2}$ seen in the working
			1, -3		A1 dep on M1 being awarded (allow if the method is seen in the working space for part (a))
ALT	(a)	$px^2 + 2pqx + pq^2 + r$			M1 for multiplying out $p(x+q)^2 + r$ to obtain $px^2 + 2pqx + pq^2 + r$ oe
		2 of: $p = 3$ $2pq = 6$ oe $pq^2 + r = -9$ oe			M1 for equating coefficients and making 2 correct statements
			$3(x+1)^2-12$		
					Total 5 marks

Ques	stion	Working	Answer	Mark	Notes
22	(a)	$v = 6t^2 - 16t + 15$		2	M1 for $6t^2$ or $\pm 16t$
			$6t^2 - 16t + 15$		A1 do not isw an answer of $12t - 16$
	(b)	a = 12t - 16		3	M1 for $12t$ or ± 16 allow if seen in (a) only if used in (b)
		$12t - 16 = 0 \Longrightarrow t = \frac{4}{3}$			M1 sets their $a = 0$ leading to a value for t
		4.33			A1 allow 13/3 awrt 4.3 Note: we have not told the candidates that we must see working therefore a correct answer with no working scores full marks, an answer of $\frac{4}{3}$ scores 2 marks and an answer of $\left(\frac{4}{3}, \frac{13}{3}\right)$ without identifying the $\frac{13}{3}$ oe scores 2 marks
ALT		$6\left(t - \frac{16}{6 \times 2}\right)^2 \pm \dots$			M1 1st step to completing the square ft their (a) if a 3 term quadratic
		$6\left(t-\frac{4}{3}\right)^2 + \frac{13}{3}$			M1 Completing the square ft their (a) if a 3 term quadratic
			4.33		A1 allow 13/3 awrt 4.3
		cas			Total 5 marks

Q	Working			Answer	Mark	Note	es
23	Finding $\angle OBC$ or $\angle OCB$ eg	ALT 1	ALT2		6	M1	We can not mix and match
	$\angle OBC = 90 - 54[= 36]$	$\angle CAB = 54$	$\angle OBC = 90 - 54 [= 36]$				methods but we award to the
							scheme that is the most benefit
	102	Einding $/OAB$ or $/OBA$	$\angle BOC = 180 = 2 \times "36"$			M1	to the candidate.
	$\angle ACB = \frac{102}{2} [= 51]$		$2b00 = 100 \ 2 \times 50$				
	2	(180-102)	[=108]				Angles must be clearly labelled
		$\angle OAB = \frac{(100 - 102)}{2} [= 39]$					or otherwise identified with no
	Finding / OCA on / OAC as	$\frac{2}{100000000000000000000000000000000000$	Finding (OCA on (OAC))			M1	ambiguity or contradiction on
	Finding ZUCA of ZUAC eg	Finding ZOCA of ZOAC	Finding ZOCA of ZOAC			IVII	the diagram.
	(OCA 51 2(eg	eg				Only accept one letter 11: A = 15 $Q = 258$
	$\angle OCA = 51 - 30$	(OCA - "54" "20")	$\angle OCA =$				$A = 15 \ O = 258$ $B = 36 \ C = 51$
	or	20CA = 34 - 39	180 - (360 - 102 - "108")				$D = 50^{\circ} C = 51^{\circ}$
	$\angle OCA = 360 - (360 - 102) - "36" - "51"$		2				
				15		A1	
	Note values of 36 and 15 can come from	incorrect working. Some cand	idates incorrectly think that			Thes	se marks are independent of
	triangles COB and COA are congruent an	d that $COB = COA$				whic	ch method is used
	OBC = 36 M1						
	360-102					B2 A	At least 2 correct reasons related
	Then $180 - 30 - \frac{100}{2} = 15$					to th	eir calculations, one of which
	51 - "15" = 36					must	t be a circle theorem.
	To help if you are seeing 129 then check	carefully				B1 f	or 1 correct reason related to
	To help it you are seeing 125 then eneer	carerany				their	calculation.
	Angle between tangent and radius (diame	ter) is 90°				Note	We can allow symbols for the
	Angle at the centre is $2 \times (double)$ angle a	at circumference / angle at circ	cumference is ¹ /2 angle at			Word	ts 'triangle' 'angle' and 'sum'
	centre					word	is thangle, angle and sum
	Base angles in an isosceles triangle (are e	qual)					
	<u>Angles</u> in a <u>triangle</u> add to 180°						
	Angles around a point add up to 360°						
	<u>Angles</u> on a <u>line</u> add to 180°						
	Alternate segment theorem						
	<u>Angles</u> in a <u>quadrilateral</u> add to 360°						
	CAS						Total 6 marks

Q		Working	Answer	Mark	Notes
24		$P(1^{st} Pad) = \frac{3}{2} \text{ or } P(1^{st} Plue) = \frac{5}{2}$		6	M1 For correct use of ratio to find a correct probability
		$1(1 \text{ Ked}) = \frac{-6}{8} \text{ or } 1(1 \text{ Brde}) = \frac{-6}{8}$			for the 1 st button or the correct number of red or blue on
					the first selection.
		$\frac{3}{2}n-1$ $\frac{3}{2}n-1$			M1 For finding an algebraic expression for the probability
		P(both Ped) = $\frac{3}{2} \times \frac{8}{8}$ or as $\frac{3n}{8} \times \frac{8}{8}$			of two red or two blue buttons
		$1 (\text{both Red}) = \frac{1}{8} \wedge \frac{1}{n-1} \text{ of eg} \frac{1}{8n} \wedge \frac{1}{n-1}$			Allow $n \times \frac{pn-1}{2}$ or $n \times \frac{pn}{2}$ where $0 < n < 1$
		5 5 5			n-1 n n n
		$5 \frac{-n}{8} - 1 5n \frac{-n}{8} - 1$			Allow $n \neq qn-1$ or $n \neq qn$
		or P(both Blue) = $-\frac{1}{8} \times \frac{1}{n-1}$ oe eg $\frac{1}{8n} \times \frac{1}{n-1}$			Anow $p \times \frac{1}{n-1}$ or $p \times \frac{1}{n}$
		5 3			where $0 and p+q = 1$
		$3 \frac{5}{8}n^{-1} 5 \frac{5}{8}n^{-1}$			
		or P(one of each colour) = $\frac{1}{8} \times \frac{1}{n-1}$ or $\frac{1}{8} \times \frac{1}{n-1}$ or			
		3 5			M1 implies previous M1 for algebraic expression for
		$3 \frac{5}{9}n^{-1} 5 \frac{5}{9}n^{-1}$			$P(2 \text{ red}) + Prob(2 \text{ Blue}) \text{ or } 2 \times P(\text{ red}) \times Prob(\text{ Blue})$
		$\frac{3}{9} \times \frac{8}{9} + \frac{3}{9} \times \frac{8}{9} + \frac{3}{9} \times \frac{8}{9} = \frac{1}{9}$ oe			pn-1 $qn-1$ pn qn
					Allow $p \times \frac{1}{n-1} + q \times \frac{1}{n-1}$ or $p \times \frac{1}{n} + q \times \frac{1}{n}$
		$\frac{3}{2} - \frac{3}{2}n - 1$			where $0 < n < 1$ and $n+a = 1$
		or $2 \times \frac{3}{2} \times \frac{8}{1}$ oe			
		8 n-1			
		$2^{-3}n-1$ $5^{-1}n-1$ 10			W1 implies the previous method marks a correct equation
		$\frac{3}{2} \times \frac{8}{2} + \frac{3}{2} \times \frac{8}{2} = \frac{10}{12}$ oe			With their ratio for $P(2red) + Prob(2Rlue) = 10/10 \text{ or } 2 \times P(red) \times Prob(Rlue) = 0/10$
		8 n-1 8 n-1 19			nn = 1 $nn = 1$
		$3 \frac{5}{9} n-1 q$			Allow $p \times \frac{pn-1}{1} + q \times \frac{qn-1}{1}$
		$\operatorname{or} 2 \times \frac{2}{9} \times \frac{70}{10} = \frac{2}{10}$ oe			$n-1 \qquad n-1$ where $0 < n < 1$ and $n + a = 1$
	-				where $0 and p+q - 1$
		$\frac{9}{2}n-3+\frac{25}{2}n-5=\frac{10}{12}\times 8(n-1)$ or $285n=288(n-1)$ oe			M1 multiplying throughout by $n - 1$ or n and $n - 1$ to
					remove the denominator to form a correct linear or
		$\left \frac{3}{2n}\left(\frac{3}{2n-1}\right)+\frac{5}{2n}\left(\frac{5}{2n-1}\right)\right =\frac{10}{2n}n(n-1)$ or $\frac{3}{2n^2}-9n$ or			quadratic equation without terms in n on the denominator.
		$8^{n}(8^{n-1}) + 8^{n}(8^{n-1}) + 19^{n(n-1)61} \frac{1}{32}n - 9n60$			Note: if all terms are on one side, condone the missing =0'
			96		A1 cao (ie must have discounted $n = 0$ if found)
					Note: An answer of 96 with no obvious incorrect working
					gets all 6 marks
					Total 6 marks

Q	Working USING $n = 8x$	Answer	Mark	Notes
24	$P(1^{st} Pad) = \frac{3}{2} \text{ or } P(1^{st} Pha) = \frac{5}{2}$		6	M1 For correct use of ratio to find a correct probability for
	$r(1 \text{ Ked}) = -01 r(1 \text{ Dive}) = -\frac{1}{8}$			the 1 st button or the correct number of red or blue on the
				first selection.
	$P(both Pad) = 3 \cdot 3x - 1 = 3x \cdot 3x - 1$			M1 For finding an algebraic expression for the probability
	$\int (\operatorname{both} \operatorname{Red}) = \frac{-1}{8} \times \frac{1}{8x-1} \operatorname{de} \operatorname{eg} \frac{1}{8x} \times \frac{1}{8x-1}$			of two red or two blue buttons
	or P(both Blue) = $\frac{5}{8} \times \frac{5x-1}{8x-1}$ oe eg $\frac{5x}{8x} \times \frac{5x-1}{8x-1}$			Allow $\frac{r}{t} \times \frac{rx-1}{tx-1}$ or $\frac{r}{t} \times \frac{rx}{tx}$
	or P(one of each colour) = $\frac{3}{8} \times \frac{5x-1}{8x-1}$ or $\frac{5}{8} \times \frac{3x-1}{8x-1}$ oe			Allow $\frac{r}{t} \times \frac{sx-1}{tx-1}$ or $\frac{r}{t} \times \frac{sx}{tx}$
				where $r < t$ and $s < t$ and $r+s = t$
	$\frac{3}{-1} \times \frac{3x-1}{-1} + \frac{5}{-1} \times \frac{5x-1}{-1}$ oe			M1 implies previous M1 for algebraic expression for $P(2 = 1) + P(2 = 1)$
	8 8x - 1 8 8x - 1			$P(2 \text{ red}) + Prob(2 \text{ Blue}) \text{ or } 2 \times P(\text{ red}) \times Prob(\text{ Blue})$
	or $2 \times \frac{3}{8} \times \frac{5x-1}{8x-1}$ oe			Allow $\frac{r}{t} \times \frac{rx-1}{tx-1} + \frac{r}{t} \times \frac{sx-1}{tx-1}$ or $\frac{r}{t} \times \frac{rx}{tx} + \frac{r}{t} \times \frac{sx}{tx}$
				where $r < t$ and $s < t$ and $r+s = t$
	$\frac{3}{8} \times \frac{3x-1}{8x-1} + \frac{5}{8} \times \frac{5x-1}{8x-1} = \frac{10}{19} \text{ oe}$ or $2 \times \frac{3}{8} \times \frac{5x-1}{8x-1} = \frac{9}{19} \text{ oe}$			M1 implies the previous method marks a correct equation with their ratio for P(2red)+Prob(2Blue)=10/19 or 2×P(red)×Prob(Blue)=9/19 Allow $\frac{r}{1} \times \frac{rx-1}{r-1} + \frac{r}{r} \times \frac{sx-1}{r-1}$
				t tx - 1 t tx - 1
	$19(34x^{2}-8x) = 10(64x^{2}-8x) \text{ or}$ $646x^{2}-152x = 640x^{2}-80x \text{ or } 6x^{2}-72x[=0] \text{ oe}$ or $19(34x-8) = 10(64x-8) \text{ or } 646x-152 = 640x-80 \text{ or}$ $6x-72 = 0 \text{ oe}$			where $r < t$ and $s < t$ and $r+s = t$ M1 multiplying throughout by $8x - 1$ or $8x^2 - x$ to remove the denominator to form a correct linear or quadratic equation without terms in x on the denominator. Note: if all terms are on one side, condone the missing'=0' Note: this leads to a value of $x = 12$
		96		A1 cao (ie must have discounted $n = 0$ if found) Note: An answer of 96 with no obvious incorrect working gets all 6 marks
				Total 6 marks

Q		Working	Answer	Mark	Notes		
25		ph-2h=5 or -5=2h-ph or $\frac{5}{h}=p-2 \text{ or } \frac{-5}{h}=2-p$		3	M1 Multiply by h and collect terms in h on one side. Allow one sign error or separate the fraction and isolate the term in h . Allow one sign error		
		h(p-2) = 5 or -5 = h(2-p)			M1 taking h out as a common factor (dep on two different terms in h) or multiplying throughout by h (if separated the fraction and isolated the term in h)		
			$h = \frac{5}{p-2}$		A1 allow $h = \frac{-5}{2-p}$ Do not isw but condone $\frac{5}{p-2}$ or $\frac{-5}{2-p}$ on the answer line, provided $h = \frac{5}{p-2}$ or $h = \frac{-5}{2-p}$ has been seen in the working space		
		cas			Total 3 marks		

Q	Working	Answer	Mark	Notes
26	$(4x+6)^{2} = (6x+4)^{2} + (3x)^{2} - 2 \times 3x \times (6x+4)\cos 60$		6	M1 for correct substitution into the cosine rule
	oe			Only condone missing brackets around the $6x+4$ and $4x+6$ if
	$(6x+4)^2 + (3x)^2 - (4x+6)^2$			recovered
	or $\cos 60 = \frac{(6x+4)^{-1}(6x)^{-1}(4x+6)^{-1}}{2 \times 3x \times (6x+4)}$ oe			Note having sin instead of cos is not considered a misread
	$16x^2 + 48x + 36 = 36x^2 + 48x + 16 + 9x^2 - 18x^2 - 12x$			M1 Two out of three correct terms in 3TQ or
	or			Expand brackets in a correct equation
	$16x^2 + 36 = 36x^2 + 16 + 9x^2 - 18x^2 - 12x$			Condone two incorrect or missing terms (likely to be having one or
	01 1 $26x^2 + 48x + 16 + 0x^2 - 16x^2 - 48x - 26$			two signs incorrect on the last two terms eg
	$\frac{1}{2} = \frac{36x^2 + 48x + 16 + 9x^2 - 16x^2 - 48x - 36}{36x^2 + 24x}$ oe			$16x^2 + 48x + 36 = 36x^2 + 48x + 16 + 9x^2 + 18x^2 + 12x$
	$eg \frac{1}{2} = \frac{29x^2 - 20}{2x^2 - 2x^2}$			
	$\frac{2}{2} \frac{36x^2 + 24x}{40x^2 + 24x}$			M1 implies provious method more
	$22x^{2} - 24x - 40[=0] \text{ or } 11x - 12x - 20[=0] \text{ or }$			Simplifying to get correct 3TO
	(11r+10)(r-2)[=0]			M1 Attempt to solve their three term quadratic, if the quadratic is
	(11x + 10)(x - 2)[-0]			incorrect the method must be shown.
				For factorisation must multiply out to give 2 of the terms. Allow
				one error if using quadratic equation.
				Implied by $x = 2$ if previous method mark awarded
	$\frac{3x(6x+4)\sin 60}{\cos 2x(6x+4)\sin 60}$ or			MI indep Correct method to find the area of the triangle may be in terms of x or with their x value substituted. If their value of x
	2 00			If $x \neq 2$ the working must be shown
				$1_{(c, 0 \cdot 1)}$
	or			$\frac{-(6\times^{-2}+4)(3\times^{-2})\sin 60}{2}$
	$s = \frac{(4x+6) + (3x) + (6x+4)}{(4x+6)} = \frac{13x+10}{10}$ with			or
				$(4 \times 2^{+}+6) + (3 \times 2^{+}) + (6 \times 2^{+}+4) $ [-19] with
	$\sqrt{s'' \times (s'' - (4x + 6)) \times (s'' - 3x) \times (s'' - (6x + 4))}$			2 [=18] with
				$\sqrt{18} \times (18 \times (18 \times (18 \times (18 \times (28 \times (2$
		41.6		A1 Condone $24\sqrt{3}$ If an answer is given in the range in the
				working and then rounded incorrectly award full marks
	cas			Total 6 marks

Q		Working	Answer	Mark	Notes		
27	(a)		$2\sqrt{2}$	1	B1 accept $a = 2, b = 2$		
	(b)	$6+2\sqrt{3}$ $\sqrt{2}$		2	M1 Correct method to rationalise the denominator		
		$\sqrt{2}^{\times} \sqrt{2}$			Allow $\frac{6+2\sqrt{3}}{\sqrt{2}} \times \frac{-\sqrt{2}}{-\sqrt{2}}$ or $\frac{6\sqrt{2}+2\sqrt{6}}{2}$ or		
					$\frac{6+2\sqrt{3}}{3\sqrt{2}-\sqrt{8}} \times \frac{3\sqrt{2}+\sqrt{8}}{3\sqrt{2}+\sqrt{8}} \text{ or } \frac{(6+2\sqrt{3})(3\sqrt{2}+\sqrt{8})}{(3\sqrt{2})^2 - (\sqrt{8})^2} \text{ or}$		
					$\frac{6+2\sqrt{3}}{3\sqrt{2}-"2\sqrt{2}"} \times \frac{3\sqrt{2}+2\sqrt{2}}{3\sqrt{2}+"2\sqrt{2}"} \text{ oe}$		
					Allow the denominator to be simplified to 10		
					Or $\frac{6+2\sqrt{3}}{\sqrt{2}} \Rightarrow 3\sqrt{2} + \sqrt{6}$		
					M0 for $\frac{6}{\sqrt{2}} + \sqrt{6}$ as no method seen to rationalise the denominator		
			$\sqrt{18} + \sqrt{6}$		A1 dep on M mark awarded and no incorrect working seen		
		wr			Total 3 marks		

Q	Working	Answer	Mark	Notes
28 (a)	$12\left(\frac{4}{3}\right)^{3} - 4\left(\frac{4}{3}\right)^{2} - 25\left(\frac{4}{3}\right) + 14$		2	M1 allow 1.3 or 1.33 for this mark only Allow $\frac{256}{9} - \frac{64}{9} - \frac{100}{3} + 14$ but do not allow 2 without prior working
		$f\left(\frac{4}{3}\right) = 2 \neq 0$		A1 dep on M1 Correct evaluation (to 2) and recognition that this is not equal to zero or indicating that they know that for it to be a factor then it should be equal to 0 ie not just for = 2 therefore not a factor
	Credit can be given for work seen in part (a) If not seen in part (b)	1	
(b)	$(3x-4)(4x^{2})$ Division by $(3x-4)$ giving a first term of $4x^{2}$ eg $4/3 \qquad 12 -4 -25 12$ $16 16 -12$ $12 12 -9 0$ Outlient $(4x^{2}+4x-3)$		4	M1 for realising $3x - 4$ is a factor and getting $4x^2$ Allow $(2x-1)$ and $6x^2$ or $(2x+3)$ and $6x^2$ Allow $\left(x-\frac{1}{2}\right)$ and $12x^2$ etc May be seen as part of long division of synthetic long division (in which case look for the first correct non zero term on the bottom row).
	(2r+3)(2r-1)			$(6x^{2} + x - 12) \text{ or } (4x^{2} + 4x - 3) \text{ or}$ $(12x^{2} + 2x - 24) \text{ etc}$ M1 Correct factorisation of their quotient which
	$\left[\frac{(2\lambda+3)(2\lambda-1)}{(2\lambda+3)(2\lambda-1)}\right]$			must be a 3TQ
		(3x-4)(2x+3)(2x-1)		A1 dep on first 2 method marks Note: $\left(x - \frac{4}{3}\right)\left(x + \frac{3}{2}\right)\left(x - \frac{1}{2}\right)$ scores A0 A0 if they go on to solve but A1 if solve and identify correct answer on the answer line
				Total 6 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom